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In this paper we study time-splitting spectral approximations for the linear
Schiodinger equation in the semiclassical regime, where the Planck comsisnt
small. In this regime, the equation propagates oscillations with a wavelength of
O(e), and finite difference approximations require the spatial meshtsizen(e)
and the time stefg = o(¢) in order to obtain physically correct observables. Much
sharper mesh-size constraints are necessary for a uniférapproximation of the
wave function. The spectral time-splitting approximation under study will be proved
to be unconditionally stable, time reversible, and gauge invariant. It conserves the po-
sition density and gives uniforin?-approximation of the wave function fér= o(s)
andh = O(g). Extensive numerical examples in both one and two space dimensions
and analytical considerations based on the Wigner transform even show that weaker
constraints (e.gk independent of, andh = O(¢)) are admissible for obtaining
“correct” observables. Finally, we address the application to nonlineao&iciger
equations and conduct some numerical experiments to predict the corresponding
admissible meshing strategiese 2002 Elsevier Science (USA)

1. INTRODUCTION

Many problems of solid physics require the solution of the 8dimgjer equation with a
small (scaled) Planck constant

2
euf—i%Aug—i—iV(x)ug:O, teR, xeRY 1.1)

U (x,t =0) =ug(x), xeRY, (1.2)
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whereV (X) is a given electrostatic potential, ¢ <« 1, andu® = u®(x, t) is the wave
function. The wave function is an auxiliary quantity used to compute primary physic
guantities such as the position density,

ne(x, t) = |ué(x, t)|% (1.3)

the current density,
- 1 __ _
J2(X, 1) = ¢ Im(ue(x, 1) VUi (X, t)) = E(USVUE —utvue), 1.4)

where “—" denotes complex conjugation, and the energy density,

2
Ex 1) = %WuS(x, )2 4+ V X)|UE (x, )2, (1.5)

For the definition of general observables, we refer to [9].

Itis well known that Eq. (1.1) propagates oscillations of waveleagiih space and time,
preventingu® from converging strongly as— 0. On the other hand, the weak convergence
of u? is, for example, not sufficient for passing to the limit in the macroscopic densitie
(1.3)—(1.5). The analysis of the so-called semiclassical limit is a mathematically ratt
complex issue.

Much progress has been made recently in this area, particularly by the introductior
tools from microlocal analysis, such as defect measures [8], H-measures [19], and Wic
measures [7, 9, 13]. These techniques have provided powerful technical tools for expl
ing properties of the Schdinger equation in the semiclassical limit regime, allowing the
passage to the limit — 0 in the macroscopic densities by revealing an underlying kineti
structure. These techniques have not been successfully extended to the semiclassical
of the (cubically) nonlinear Schdinger equation, which was solved in the case of one
dimensional defocusing nonlinearity using techniques of inverse scattering [11, 12]. |
results regarding the semiclassical limit of the focusing nonlineard8aigér equation,
see [2, 6, 16].

The oscillatory nature of the solutions of the Smdiiriger equation with smadlprovides
severe numerical burdens. Even for stable discretization schemes (or under mesh siz
strictions which guarantee stability), the oscillations may very well pollute the solution
such a way that the quadratic macroscopic quantities and other physical observables c
out completely wrong unless the spatial-temporal oscillations are fully resolved nume
cally, i.e., using many grid points per wavelength@fe). In [14, 15], Markowichet al.
ultilized the Wigner measure, which was used in analyzing the semiclassical limit for t
IVP (1.1) and (1.2), to study the finite difference approximation to the@lhgéer equation
with smalle. Their results show that, for the best combination of the time and space d
cretizations, one needs the following constraint in order to guarantee good approximati
to all (smooth) observables fersmall [14, 15]:

h=o0(¢), k=o0(). (1.6)

Failure to satisfy these conditions leads to wrong numerical observables. Much more
strictive conditions are needed to obtain an accurdtapproximation of the wave function
itself.
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In this paper, we study time-splitting spectral approximations for thedsahgér equa-
tion in the semiclassical limit (1.1), (1.2). This approach is based on a time splitting whi
conserves the total charge and was suggested for nonlinead8uei’ equations with order
1 Plank constant [18]. The goal of this paper is to understand the resolution capacity of
spectral method far-oscillatory solutions. Due to its exponentially high-order accuracy, |
is very tempting to believe that the spectral method will allow the meshingosieerder
of magnitude largethan the finite difference methods. Indeed, our classical converger
analysis confirms the meshing strategy,

h=0(), k=o(), 1.7)

giving L2-approximation of the wave function. Our numerical experiments in both or
and two space dimensions suggest that 0 can even be chosen independently dior
obtaining “correct” observables, which we prove using the Wigner measure techniqt
These results show that the time-splitting spectral method offers compelling advante
over the finite difference methods, especially in higher space dimensions.

The paper is organized as follows. In Section 2 we present the time-splitting spec
approximations for the Scbhdinger equation. In Section 3 we prove the convergence
the method under the meshing stratégy O(e) for the case of constant potential using
classical error estimates. In this case, there is no error in time discretization. In Sectic
we prove error bounds of the wave function for the case of variable potential under (2
and in Section 5 we provide an error analysis of finite difference methods. Section ¢
concerned with the Wigner measure analysis of the spectral-splitting techniques, which
convergence of the observables. In Section 7 numerical results of the time-splitting mett
are presented and compared with other methods. We also give an outlook to nonlil
Schiodinger equations, discussing numerical observations which could lead to conjecti
about the corresponding meshing strategy. In Section 8 some conclusions are drawn.

2. TIME-SPLITTING SPECTRAL APPROXIMATIONS

In this section we present time-splitting trigonometric spectral approximations of t
problem (1.1), (1.2), with periodic boundary conditions. For the simplicity of notation w
shall introduce the method for the case of one space dimefasienl). The analysis in the
next section will also focus on the cade= 1. Generalizations td > 1 are straightforward
for tensor product grids and the results remain valid without modificationsd Eod., the

problem becomes
2
suf—i%UiX-i-iV(X)UE:O, a<Xx<b, t>0, (2.1)

U (x, t=0)=ugj(x), a<x<b, uv’@ t)=u’(,t), ug(a,t)y=uy(b,t), t>0 (2.2)

Clearly, the Sclodinger equation is time reversible, so we could pose Egs. (2.1) and (2
fort e R.

We choose the spatial mesh sizre- Ax > Owithh = (b — a)/M for M an even positive
integer and the time stdp= At > 0, and we let the grid points and the time step be

Xj:=a+jh, ta:=nk j=01....M, n=0,12,....

Let Uf’” be the approximation af® (xj, t,) andu®" be the solution vector at timte= t, =
nk with componentsi;".



490 BAO, JIN, AND MARKOWICH

The First-Order Time-Splitting Spectral Method (SP1)

From timet = t, to timet = t,, 1, the Schodinger equation (2.1) is solved in two steps.
One solves

2

Ut — i %u ~0 (2.3)

for one time step, followed by solving
eu; +iV(x)u® =0, (2.4)

again for one time step. Equation (2.3) will be discretized in space by the spectral metl
and integrated in timexactly The ODE (2.4) will then be solved exactly. The detailed
method is given by

1 M/2—1
Upr == 3 e lt2gpndmima  j=0,1,2,... M1,
M |=—M/2 25
UJ{:‘,nJrl — e—iV(xj)k/ngs,*’ ( . )
whereU?", the Fourier coefficients df*", are defined as
27l = , M M
=——, UMM=) utlem®ima | =—— . — -1 2.6
M' b . aa | JZ:O j ) 2 k) ] 2 ] ( )
with
Ur®=u(x;,0) = uj(x)), j=0,12.... M. (2.7)

Note that the only time discretization error of this method is the splitting error, which is fir
order ink for any fixede > 0. For future reference we define the trigonometric interpolan
of a functionf on the grid{xo, X1, ..., Xu}:

M/2-1 c ) . M-1 o M M
— | (X—a _ . —j X; —a) s
fl(X)_Ml_gM f|el| s f|— E_ f(XJ)e i , ]——?,,E—l
=—M/2 j=0
2.8)

The Strang Splitting Spectral Method (SP2)

From timet = t, to timet = t,.1, we split the Sclodinger equation (2.1) via the Strang
splitting

Up* =eVolkZgsn  j=012... . M-1,

1 M/2—-1
Up™ == 3" e ltd20predm®imd  j=0,12... . M-1 (29
M |=—M/2

Uis,n+l — efiV(Xj)k/ZsUjs,**’ J =0,12....M—1,
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whereU£*, the Fourier coefficients a8 **, is defined as

a"'a__l- (210)

M M
2 2

M-1
T T
j=0

Again, the overall time discretization error comes solely from the splitting, which is no
second order ik for fixede > 0.

If V(x) = V = constant, then all the time stepsin the above two methods can be combi
and the method can be written simply as a one-step method,

M/2-1
Ujs,n _ - Z e—i(s;/,lz/2+V/s)tnU"is,0eim(xj—a), (211)
I=—M/2
with
M-1
~ o M M
Upo=") " uplemti-a, l=-Z.....5 -1 (2.12)

j=0

This is the same as discretizing the second-order space derivative in (2.1) by the spe
method, and then solving the resulting ODE systactlytot = t,. Therefore, no time
discretization error is introduced and the only error is the spectral error of the spa
derivative.

For benchmark comparisons, we also define other possible schemes. The first is
Crank—Nicolson spectral method (CNSP),

U_s,rH—l _ Ué‘n ie
j i o n+1 .
k = Z(DiXUFrH_ |)(=Xj + D)S(Xusn|X=Xj)
iV (X .
- 2(8‘)(Uf*”+1+uf’”), j=01,...,M -1,
+1 +1 +1 +1 (2.13)
e, N n ,n e,n
Ugmt = U™t uptt = o,
Ur®=uj(xp). j=012... M-1
whereD;,, a spectral differential operator approximatiig, is defined as
1 M/2—1 o
DU Ix=x; = —MI_XM: u? Oy drti-a, (2.14)
=—M/2
with
M—-1
A . M M
U =) Ujenxi—a | = Sy -1 (2.15)

Il
o

j

Another scheme for comparison is the Crank—Nicolson finite difference method (CNF
which is the numerical method most used for the 8dmger equation. In this method, one
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uses the Crank—Nicolson scheme for time derivative and the second-order central differe
scheme for spatial derivative. The detailed method is

Ufﬂ,,n-&-l _ Ufs'n i8
— = (U — 20T U+ U - 208 U
iV (X; .
— ;l)wa4+ufﬂ, j=12...M,
£
Ua.n+1 _ Ua,n+l Ua.n+l _ Us,rH—l (216)
0 - YM > M+1 — ™1 ’
lﬁﬁz%@ﬂ j=012...,M.

Both CNSP and CNFD, like the SP1 and SP2, are unconditionally stable. This allo
the comparison of meshing strategy based solely on resolution capacity without worry
about numerical stability.

We remark that all the difference schemes presented in this paper are time revers
just as the IVP for the Scbdinger equation. Also, note that a main advantage of the time
splitting methods is their gauge invariance, just as for the@tthgér equation itself. If the
constantx is added to the potentidl, then the discrete wave functiomﬁ“n+1 obtained
from SP1 and SP2 get multiplied by the phase faetét™+Y%/¢ 'which leaves the discrete
guadratic observables unchanged. This property does not hold for finite difference schei

3. ERROR ESTIMATES FOR CONSTANT POTENTIALS—SP1

Letu= (Ug,...,Uu_1T. Let || x|,z and || x|;= be the usualL?-norm and discrete
I2-norm respectively on the intervéd, b); i.e.,

b
||u||Lz=,// ueORdx, fulle =
a

For thestability of the time-splitting spectral approximations SP1 and SP2, with var
able potentiaV (x), we prove the following lemma, which shows that the total charge i
conserved.

(3.1)

LEmMMA 3.1. The time-splitting spectral schem®B1 (2.5)and SP2 (2.9)are uncondi-
tionally stable. In factunder any mesh size h and time step k

Iue"liz = |ug|

2 N=12..., (3.2)
and consequently
Jur™ e = Jui®l . n=12.... (3.3)

Here uj"" stands for the trigonometric polynomial interpolatifigo, ug"), (X1, uy™, ...,
(Xm, Uy}
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Proof. For the scheme SP1 (2.5), noting (2.6) and (3.1), one has

11 1 M-1 N M-1 v . 5 1 M-1 5
N+ &,n+ —IV(Xjp)k/ep18.*|4 __ &%
T ) 1 R O R LAV ) SV
i=0 j=0 j=0
M—1 M/2-1 2
— i i e—igkuf/zols,neim(xj—a)
M j=0 M I=—M/2
1 M/2—-1 k22 1 M/2—-1 o2
=z D e = Y O
I=—M/2 I=—M/2
1 M/2-1 | M—-1 1 M-1 5
_ e,n —| (Xj—a) _ e,n
=z 2 ZU e —mZWﬂ
I=—M/2| j=0 i=0
1
= m”u&””ﬁz. (3.4)
Here, we used the identities
M-1
. . 0, k—I#mM, ,
> @zkehim - {M ‘] me m integer (3.5)

and

M/2 1 0, k—j#mM

i : 3.6
M. K—j=mM, m integer (3.6)

g2rk=I/M _ {
I=—M/2

For the scheme SP2 (2.9), using (2.10), (3.1), (3.5), and (3.6),
1 M-1

1 entl; 2 _ - £,n+1)2 —iV (x)k/2e 8** — N ’ &, %%
E e = Y U= Zle MEURL = ;U

j=0 j=

2

M-1 M/2—1

7| akuf/zlj Is,*ei i (Xj—a)

ZIH

=0 |—7M/2

M/2—-1
| —Isku. /2UE*’ —

M/2—1
1 1077
M2 !
I=—M/2 I=—M/2
1 M_l £,k 2
v Y
j=0
M—

iiie |V(x,)k/ZsUan _ Z Usn
=0

j=0

2le

2

M/2-1 | M—1

Z Uereimxi—a
j

2l

I=—M/2

1
= ——|lu"|%. 3.7
L[ 3.7)

Thus, the equality (3.2) can be obtained from (3.4) for the scheme SP1 and (3.7) for



494 BAO, JIN, AND MARKOWICH

scheme SP2 by induction. Notice that, for every periodic funcfipthe equality

b —a M-1
Il =1 flhe = | == > 1P (3.8)
j=0

holds. Heref, stands for the trigonometric interpolant bon {xg, X1, ..., Xu}, defined in
(2.8). Thus, (3.3) is a combination of (3.2) and (3.8

To obtain an error estimate, we assume that the funetian (1.2) and (2.2) i<C* on
R and periodic with periodh — a. Moreover, we assume that there are positive constan
Cm > 0, independent of, for every integem > 0, such that

m

< C—m forallm € N U {0}. (3.9)

dm
(A H—u
dxm 0 L2(a,b) &

This condition is clearly satisfied by the semiclassical WKB initial data

Uu® (X, 0) = /ng(x)e /e

if ng andS areC* onR and(b — a)-periodic.
Now we are ready to prove the following error estimate, which holds for constant potent
V(x) = V = constant. In this case, both SP1 and SP2 reduce to (2.11).

THEOREM 3.1. Let ¥ be the exact solution gR.1), (2.2),let V = constant and let
u"" be the trigonometric interpolant af" = (U;”*”)}\"z‘o1 as obtained fronf2.11) Under
assumptior{A), we have for all integers » 1

e e h m
Jui™ —u )] . < DCm<m> : (3.10)
where D> 0is a constant.

Proof. From Theorem 3 in [17] we conclude the estimate

Jui® —us] . <o)
: oLz ="\ b—a

form > 1, whereD > 0 depends only ofb — a). Sinceu;" is the exact solution of (2.1)
(subject to periodic boundary conditions) witho as initial datum, at = t,, and since the
Schiodinger equation generates a unitary group on the spa@e b), the estimate (3.10)
follows. m

m
d_u“/‘
dxm ©

h
e(b—a)

)m, (3.11)

= Dcm(

L2

Remark 3.1. The authors are grateful to J. E. Pasciak, who pointed out the estim:
(3.11) to them. This improved the results and helped to simplify the proof of the previo
version of the manuscript.

It is important to point out that in the above theorem, the error estimate (3.10) holds
all integersm > 1. This is the unique feature of the spectral method not shared by fini
difference approximations.

Based on (3.10), we can formulate the following meshing strategys Le0 be the
desired error bound. Then

Justn) —up"| . <8 (3.12)
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holds if for somem > 1

E < w. (3.13)

3 (DCp)V/m

Although the bound orﬁ} obtained in (3.13) iD(1) ase — 0 for every fixeds > 0 and

m > 1, thes-dependence can be made arbitrarily weak by choasirsgfficiently large.
However, increasingy generally restricté‘sr sinceCr, may increase (even rapidly) as—

oo. As is typical for spectral methods, the mesh strategy depends on precise regul:
properties of the solution. We mention that the existencg of 0 such thaCp,,y™ — 0
asm — oo implies that the Fourier coefficients ® of ug —

Fourier series foug has only finitely many terms. In this case the meshing strategy (3.1
generates the exact solution of the IVP for the 8dimger equation by the time-splitting
spectral method.

4. ERROR ESTIMATES FOR VARIABLE POTENTIALS—SP1

In this section we establish error estimates for the SP1 in the case of variable potel
V. We assume that the solutiof = u®(x, t) of (2.1), (2.2) and the potenti&l (x) in (2.1)
areC*>(R) and(b — a)-periodic. Moreover, there are positive constadgs> 0, Dy, > 0,
independent of, x, t, such that

3m1+mg

—Uu
oxXmgtm:

N S Dma

Cm1+m2
- 8m1+mz ’

(&‘

C([0,T];L%(a,b)) L>(a,b)

forallm, m;, my, e nU{0}. (4.1)

Thus, we assume that the solution osscillates in space and time with wavelength
Now we are ready to prove the following error estimate, which holds for SP1 with variat
potentialV = V (x).

THEOREM4.1. Let ¥ = u®(x,t) be the exact solution dR.1), (2.2)and u®" be the
discrete approximatiorsP1given by(2.5). Under assumptior{B), and assuming}eS =
o, 2 = O(1), we have for all positive integers m 1and t, € [0, T] that

h >m CTk7 4.2)

£ £, T
) = P2 = Gy <e(b a)

&

where C is a positive constant independent di, k, and m and G, is independent of
g, h, k.

Proof. First we estimate the local splitting error in (2.3) and (2.4) for (2.1). We defin

two operators,
ike .
A= b B=-iVOk/e. (4.3)

Let

w(x) = et (-, tn) (4.4)
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be the solution obtained from the operator splitting method (without spatial discretizatic
after one time step with the exact initial datgatClearly, the exact solutiowf (x, tn1) iS
given by

U (X, thpa) = €FPUC ). (4.5)

The analysis of the operator splitting error is classical, and the error results from the n
commutativity of the operatord and5. Whene is O(1), SP1 gives a first-order error in
k. Here it is necessary to understand how the error depenels on

By (4.1),

2 2
(BA — AB)u(x,t) = kEaXX(v u) — %@Xu

k2 k2
= Euaxzv + K20,V oxu = o<;>. (4.6)

A key observation of (4.6) is that the leading order te¥§53xxu = O(k?/¢?) cancels.
Consequently, an elementary computation using Taylor expansicet cef and e**5
gives

k2
U (thye) — wil2 = O(;) 4.7)
We have

" < I (D) — wllez + lw — wi e + Jw —uf™ L (4.8)

|| u? (th+1) — UT’
and

Jwr = U™ = = u e = e ) — etut |,
= lu*(tn) = u™" 2 = Uty — U

< Ut — U t)llLe + [Juf(tn) — ui"| (4.9)

For the first equality, we usddf || = || f, || .2. For the second, we used the definition.of
and the fact that the first step in (2.5) (i.e., the computatidmfd‘f) is equivalent to the exact
solution of the free Sclodinger equation (2.3) with initial datuni". The third equality is
based on the conservation property (3.2) and the fourth agajrf tha = | f, ||_2. Thus,

e (tns) — U™ L

< U (tny) = wllez + llw — willz + U (t)1 = U () llee + [ u*(t) —up"|| . (4.10)

The first inequality in (3.11) gives

m

wug(tn)

h m m
I ()1 — U (t)le < D(—) ) @41

b—a

= DCm(

L2 (b — a)&‘
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where we used the Assumption (B). Analogously,

h h m
lw— w2 < D(g) w . < Em((b— a)a> (4.12)

= O(1). Here we used

dm
dxm

k h
: =00 5

m o) £ty (M=)
H il ( J. )(eﬁ) (€U’ (tn))

L2

j=0
m
=2

i

|_2
O (T) [€0] - @ ™. @19
Then, using (4.7), we obtain

U (s — ™

<Fk2+E h m+DC h m+||u8(t) ur| (4.14)
e "\(b-a) "\ (b—a)e O L

assumingt = O(1),

F(b 5 = = 0O(1). The estimate (4.2) follows by inductionm

Again, lets > 0 be the desired bound such that (3.12) holds. Then the meshing strat

k 5 h sYm o K\Ym
Z—o(2). ®» —=ol—— (= 4.15
@ 3 (T) © ((Gm)l/m(T> 19
is suggested by Theorem 4.1, whene> 1 is an arbitrary integer. Note that the constraint

onhis slightly worse than in the constant potential case, due to the fa?lé/l‘“ appearing
in (415b).

Remark 4.1. Our extensive numerical tests and the analysis of Section 6 confirm that:
meshing (1.7) is too restrictive for both SP1 and SP2 if only accurate quadratic observa
are desired; cf. below.

Remark 4.2. The proof for SP2 involves more complicated calculations and will b
omitted here. We believe that one can establish an estimate at least as good as the o
SP1.

5. ERROR ANALYSIS OF CNSP AND CNFD

The analysis of thé.2-error of the CNFD method proceeds by the consistency—stabilh
concept and is completely standard. We extend (2.1@), to] by replacingJ "byu®"(x),
U;fy by u"(x = h), and analogously fdd{"**, US"™. Using (B) we conclude the local
discretiztion error of (2.16) by inserting the solutluf(x, t) of (1.1), (1.2) and by Taylor
expansion:

k? h?
é“FD = O(szutstt ” Lg@(Lg)) + O(h28 ” uixxx” L?C(LE)) = O<C3§ + C4g>' (5-1)

Using stability gives
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THEOREM5.1. The global [?-error of CNFD is

k? h2
U (1) — U2 = O<<C3—3 + c4—3) T). (5.2)
&€ &

For CNSP we proceed analogously and compute the local discretization error by stanc
spectral techniques (all of which are already used in Sections 3 and 4 above),

2 h m—2 1
lensp= O(k lugee L?“(LE)) + O<Cm <(b — a)e) E) (5.3)

Again, stability gives

THEOREM5.2. The global error of CNSP is

. k2 h \™?%1
U ) — uf ||L2_o<<03;+cm<(b_a)s> g> T). (5.4)

Thus, a meshing strategy for CNFD generating a global err@@j would be

k=0(©%Y?), h=0(©e3"?). (5.5)

Less restrictive meshing conditions can be employed if only uniform approximation of t
observables is desired [14].
For the CNSP method we conclude the meshing

k = O((853)1/2)’ h= O(s (2—5) mz), (5.6)
m
for all integersm > 2.

We remark that the methods CNFD and CNSP are globally charge conserving, ti
reversible, buhotgauge invariant.

6. APPROXIMATION OF OBSERVABLES

Letf,ge L2(RY). Then the Wigner transform ¢@ff, g) on the scale > 0 is defined as
the phase—space function:

€ _ 1 f ¢ _¢ jo-&
w06 = s | f(x+20)g<x 20>e do 6.1)

(cf.[9, 13]for a detailed analysis of the Wigner-transform). Itis well known that the estima

lw(f, Dlles < Il FllL2e) 191l 2Ry (6.2)
holds, wheref is the Banach space
£ = {¢ € Co(RY x RY) : (Fe v (X, v) € LY(RY; Co(RY)) ],

lolle 1=/ SUp|(Fe—v) (X, v)| dv

R, XERQ
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(cf. [13]). £* denotes the dual space®and(F:_,,0)(v) = ng o (£)e vt dg denotes the
Fourier transform.
Now letu?(t) be the solution of the IVP (1.1), (1.2) and denote

wé(t) = w® (U (), u®(t)). (6.3)

Thenw? satisfies the Wigner equation
wi +& - Vew® + O [V]w' =0, (x,£) eRIxRY, teR, (6.4)
w(t = 0) = w*(uf), up), (6.5)

where®¢[V] is the pseudo-differential operator,

O [V]w (x, &, 1) i= (2:,)(; ng Vx+5e) ;V(X 5% 46 (. o 0 dar (6.6)

wherew? stands for the Fourier transform

Feoqw® (X, -, 1) 1= /d we(x, &, e ' * ¢ dg.

Re
The main advantage of the formulation (6.4), (6.5) is that the semiclassicat limiD can
easily be carried out. Takingto 0 gives the Vlasov equation

wl +& - Vw’ — Vi V(x) - Vaw® =0, (x,6) eR{xR{, teR, (6.7)

wlt =0 =u’:= |im0w8(ug, ug) (6.8)

(cf. [9, 13]), where

w? = lim w®.
e—0
Here, the limits holdin an appropriate weak sense (i.€” ir »*) and have to be understood
for subsequences,, ) — 0 of sequence,. We recall thalw?, wO(t) are positive bounded
measures on the phase—spBgex R¢.
Now leta = a(x, &) be a smooth real-valued phase—space function with sufficient dec
as|X| + |&| — oo. Then the self-adjoint pseudo-differential operator

A= ax, eD)W,

whereD = %VX and “W” stands for the Weyl-symbol (symmetric generalization; see [9]]
is called an observable and

Ef(t) = /d U (t)(a(x, eDYWue (t)) dx

X

is its average in the stat€ (t). Note that, for example, the position density(t) can be
defined by

f n“(x, Hp(X) dx = Ef__ (1),
RY R

X

where¢ € D(Rﬂ) is an arbitrarg-independent observable.
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A simple computation shows
Ea() = / / w®(X, &, va(x, &) dx d&
RS JRY
and consequentl: (t) can be taken to its semiclassical limit
lim E5(t) = / / wO(x, &, a(x, £) dx d.
e—0 Rﬂ R?

This limit process was considered rigorously in [9, 13].

We remark that the definition and analysis of Wigner transforms can easily be adapte
x-periodic wave functions (by replacing Fourier transforms by Fourier series); for the se
of simplicity we shall, however, consider only the whole space case (1.1), (1.2) here.

Now letii* (t) be anL 2(RY)-approximation of the wave functiari (t) at timet, uniformly
bounded inL2(R%) ase — 0. Then we have, denoting? {t) = w® (li€ (t), U¢ (1)),

w(t) — @ (1) = w (U (), u* (1) — w (@ (), T (1))
= wo (U (1) — T (1), () + w (U (1), u”(t) — U°(1))

due to the bilinearity of the Wigner transform. The estimate (6.2) gives

w®(t) — D V)]l < (||Ug(t)||L2(Rd) + ||U£(t)||L2(Rd))||GE(t) - US(UHLZ(R")
< ClE* () — u* )l L2gey- (6.9)

Thus, denoting the approximation observable mean value
Ea(t) = / e (t)(a(x, eD)"U° (1)) dx = / / wf(Ha(x, &) dé dx,
RY R JRY

we find
|Ea(t) — Ea()| < llallell®®(t) — w®t)lle- < CllallellT(t) — U (O [l L2(gy) -

L2-approximation of the wave function implies approximation of observable mean valu
(for sufficiently smooth and decaying observables) of the same order. However, typica
weaker conditions on the mesh parametgr& suffice to generate accurate observable:
than necessary fdr2-approximation of (t) (cf. [14, 15] for a corresponding analysis of
FD-scheme). For exampl§,+ f — 0 is sufficient and necessary for the Crank—Nicolsor
FD-scheme to guarantee that all (smooth and decaying) observables are well approxim:
Clearly, this is not sufficient fok. 2-approximation of the wave function.

Consider now the first-order time-splitting spectral method (SP1). In the time,step
th.1 the error is induced by the spectral approximation of the interpolation error resulti
from the spectral approximation af-". For the corresponding Wigner transform this error
can be estimated using (6.9) and theestimate of Section 4. Although this might not be
optimal, the spatial mesh size condition (4.15b) is surely sufficient to guarant@g¢san
error, caused by the spectral approximation, of the observables on the time intefivial [0
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To understand the splitting error we remark that the time splitting (2.3), (2.4) correspol
to the time splitting of the Wigner equation (6.4)

wi +&-Vyw® =0, telth,thi] (6.10)
followed by
wi + @°[V]w® =0, t e[ty thya]. (6.112)

Clearly, the limite — O can be carried out in (6.11) leavikgfixedand we obtain the
corresponding time splitting of the Vlasov equation (6.7)

wp +& - Vw® =0, t€ [ty thy1] (6.12)
followed by
w? — ViV - Veuw® =0, t e [ty, thyd]. (6.13)

Note thatno other error is introduced by the splitting (SP1) since the time integrations &
performedexactly

These considerations, which can be made rigorous easily, show thfoam (i.e.,
e-independenttime-stepping control,

k=0, (6.14)

combined with the spectral mesh-size control (415b) give®@n-error uniformly ag —

0in the Wigner function and consequently in all observable mean values (correspondin
smooth and decaying functi@ix, &)). This strategy, actually confirmed by the numerical
experiments carried out in the next section, is clearly superior to FD schemes, which req
E — 0 even for the approximation of observables.

7. NUMERICAL EXAMPLES

In our computations, the initial condition (1.2) is always chosen in classical WKB fori
U (X, t = 0) = Uj(X) = v/no(x) &%/, (7.1)

with ng and & independent ot, real valued, regular, and withy(x) decaying to zero
sufficiently fast agx| — oo. We choose an appropriately long interval b] for the com-
putations such that the periodic boundary conditions do not introduce a significant e
relative to the whole space problem.

ExaMmpLE 1. The initial condition is taken as
1
No(X) = (e‘25(x‘°'5)2)2, (X) = -z In(e2*~99 4 e7°*709) " x e R. (7.2)

This example was already used in [12, 14]. We solve onxtirgerval [0 1], i.e.,a =10
andb = 1 with periodic boundary conditions. L&t(x) = 10 be a constant potential. Due
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1.5¢

0.5}

(0] 0.2 0.4 0.6 0.8 1

FIG. 1. Weak limits in Example 1 at = 0.54. (a)n°(x, 0.54); (b) J°(x, 0.54).

to the compressive initial velocit% S(x), caustics will form. The weak limita®(x, t),
JO(x, t) of n°(x, 1), J°(x, t), respectively, ag — 0, given in [12], can be computed by
evaluating the zeroth- and first-order velocity moments of the limiting Wigner function fc
¢ — 0, which solves the Vlasov equation [14]. As a reference we plot them=a0.54
(after the caustics formed ) in Fig. 1.

First, we test the meshing strategy of the time-splitting spectral approximation (2.1
(note that for constant potential SP1 is of course equivalent to SP2). Figure 2 shows
numerical results with different combinationssph. Note that no time-discretization error
is introduced for constant potential; i.e., the corresponding discrete wave functions
independent ok at a fixed valué = t,,. Thus, we compute the solution in one time step. In
Fig. 2 as well as in Figs. 3 and 4 and 6-8, the dotted line is the corresponding weak li
solution and the solid line is the numerically obtained solution. From this figure we can ¢
that, under the meshing strategy

2 = 0(1), (7.3)
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position density current density
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o] 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1

FIG. 2. Numerical solutions at = 0.54 in Example 1 by using SP2 (2.9Y.(x) = 10. (a)e = 0.0256,
h=%;(b)e =00064,h = Z;(c)e =0.0008h = L; (d)s = 0.0001,h = ;L. (e)s = 0.000025h = L;
(f) & = 0.0000125h =

1
32768

we observe numerical convergence (in the weak sense) to the limit solutien as
h— 0.

In order to test the importance of the time discretization, we consider the Crank—Nicol:
spectral method (2.13). We choose the same meshhsizéhich is the same order as
e = 1073, and test the effect of different time steps in CNSP. The results are plotted
Fig. 3. One can see that for CNSP, even Kot 0.0001, the numerical solution cannot
capture the correct weak limit. Fér= 10", CNSP gives a solution comparable to the
solution of SP2. Our numerical experiments indicate that the correct meshing strategy
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position density current density
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FIG. 2—Continued

CNSPis
h_ 0(1), k_ o(1). (7.4)
& &

Third, we compare the difference between the spectral discretization and the finite |
ference discretization, when in both schemes the same time discretization, namely
Crank—Nicolson method, is used. We shall compare the performance of CNSP with CN
(2.16). We always choose a very small time skefp eliminate temporal discretization
errors. Figure 4 shows the numerical results for different mesh kideshows that, when
the time step resolves the semiclassical seatbe spectral method allows a mesh dize
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position density current density
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FIG. 3. Numerical solutions at = 0.54 in Example 15 = 107, V(x) = 10,h = %2 (a) CNSP (2.13),
k = 0.00001; (b) SP2 (2.9); (c) CNSP (2.18)= 0.0001.

on the order ot, while the finite difference approximation requiteso be much smaller
thane. This shows that the spectral approximation has much better spatial resolution
oscillatory solutions than the finite difference approximation. Our numerical experimel
indicate that the meshing strategy for CNFD is

h=o0(), k=o0(), (7.5)

which was proved analytically and observed numerically in [14].

Last, we test the error estimate (3.10). For each fixae compute a numerical solution
by using SP2 with a very fine mesh, e.g.= %763 as the “exact” solutioru®. Table |
shows the errorgu? (t) — u="(t)|;2 att = 0.54 for differents andh.
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TABLE |
The Error ||us(t) — us"(t)||2 att = 0.54 in Example 1

Mesh
h=% h=g h=x h=gm h=zg h=g5m
e =0.0256 5.262E-3 4.087E-5 5.118E-6 6.431E-7 1.014E-7 6.268E-8
¢ =0.0064 0.4794 1.959E-4 1.770E-5 2.182E-6 2.773E-7 6.164E-8
¢ =0.0016 0.7374 0.5572 1.006E-4 8.748E-6 1.079E-6  1.433E-7
¢ =0.0004 0.6118 0.6940 0.4853 5.029E-5 4.368E-6 5.273E-7
position density current density
2 ; . 1.5 .
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I i ]
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| 1
0 | G :
-1
02 04 06 08 1 0 02 04 06 08 1
! -~
-0.5 ]
]
-1 |
I
-15 1
5 |
02 04 06 08 1 ) 02 04 06 08 1

FIG.4. Numerical solutions dt= 0.54 in Example 1¢ = 103, V(x) = 10,k = 0.00001. (a) CNFD (2.16),
() CNFD (2.16)h = 2

1.
4096’

(b) CNSP (2.9)h =

512°
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As shown in Table I, the errdfu (t) — u®"(t)||= goes to zero wheh = O(g). Due to
the oscillations of the initial data, whémis too large compared tq the error is large. This
is because the numerical initial data (trigonometric interpolant) do not resolve the init
data in this case.

EXAMPLE 2. The initial condition is taken as
No(X) = (e’ZS(X’O"r’)Z)Z, (X) = 0.2(x% — X). (7.6)

This example was also used in [14, 15]. Caustics do not occur and the limiting position :
current densities remain smooth. We solve this problem numerically on the intertdl [0
i.e.,a = 0 andb = 1 with periodic boundary conditions.

Let V (x) = 100 be the constant potential. The weak linmitgx, t), J°(x, t) of n®(x, t),
Jé(x, t), respectively, as — 0 att = 0.54 are plotted in Fig. 5.

We perform tests similar to those in Example 1. Figures 6—8 show the corresponc
results. Clearly, the same conclusion can be drawn as for Example 1.

0.021

0.011

-0.01¢

-0.02¢

0] 0.2 0.4 0.6 0.8 1

FIG.5. Weak limits in Example 2 dt = 0.54. (@)n°(x, 0.54); (b) J°(x, 0.54).
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position density current density

a 0.05

-0.05
(0]
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FIG. 6. Numerical solutions at = 0.54 in Example 2 by using SP2 (2.9).(x) = 100. (a)e = 0.0256,
h= Z;(b)e =0.0064,h = Z; (c)e = 0.0008,h = L; (d) ¢ = 0.0001,h = (e)e = 0.000025h =
(f) e = 0.0000125h =

1. 1.
64" 2096

1
32768

From the numerical results of these two examples, in which the potentials are consta
one can see that the time-splitting spectral approximation gives very promising restL
The mesh sizé can be chosen & (¢) and the time integration is exact, while for finite
differences has to ben(e).

In the next two examples, we perform tests on SP2 (2.9) for inhomogeneous potenti

ExaMPLE 3. The initial condition is taken as

No(X) = (e’ZS(X’O'E’)Z)Z, X)) = x + 1. (7.7)
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position density current density
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FIG. 6—Continued

LetV(x) = X—22 which is a harmonic oscillator. For this example, the weak limfi; t)
and J°(x, t) of n®(x,t) and Jé(x, t), respectively, ag — O are given in Gasser and
Markowich [7].

We solve the problem on the intervat, 2] with periodic boundary conditions using
SP2. Figure 9 shows the numerical results 4t0.52,t = 3.6, andt = 5.5 with k = 0.02
when we choose = 0.04,h = X; ¢ = 0.0025 h = 5i; ande = 0.00015625h = ;-

In all these runsh is on the order ot andk is chosen as constant independent ofet
the numerical solutions are very good approximations of the exact weak limit. This agr
with the analysis of Section 6.

We also test the error estimate (4.2). For each fixagle compute a numerical solution

by using SP2 with a very fine mesh, e.y.= ﬁ;, and a very small time step, e.g.,
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position density current density
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FIG. 7. Numerical solutions at = 0.54 in Example 2¢ =25 x 104, V(x) = 100,h = 2%6 (a) CNSP
(2.16),k = 0.000004; (b) SP2 (2.9); (c) CNSP (2.1R)= 0.0001.

k = 0.00001, as the “exact” solutiauf. Tables Il-IV show the erroru? (t) — u®MK(t)||;2
att = 0.64 for different combinations af, h, andk.

As shown in Tables II-1V, the errofu®(t) — u>M*(t)|> converges for the meshing
strategyh = O(g) andk = O(e).

ExAmMPLE 4 (2-dimensional). The initial condition is taken as

no(X,y) = (e—25[(x—0‘5)2+0‘8(y—0.5)2)2, S(X, y) = x + 0.5y. (7.8)
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TABLE Il
The Error |Jus(t) — us" (t)||,» att = 0.64 with e = 0.04 in Example 3

Mesh
h=% h=116 h=el4 hzz%e h=10124
k=0.16 0.7086 7.557E-3 7.556E-3 7.556E-3 7.556E-3
k =0.04 0.7097 4.801E-4 4.697E-4 4.697E-4 4.697E-4
k =0.01 0.7098 1.042E-4 2.935E-5 2.935E-5 2.935E-5
k = 0.0025 0.7098 1.000E-4 1.834E-6 1.834E-6 1.834E-6
k = 0.000625 0.7098 1.000E-4 1.146E-7 1.146E-7 1.146E-7

k = 0.00015625 0.7098 1.000E-4 7.230E-9 7.230E-9 7.136E-9

position density current density
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—0.01 ¢
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FIG. 8. Numerical solutions at = 0.54 in Example 2. = 2.5 x 10™%, V(x) = 100. (a) CNFD (2.13),
h = -1, k =0.00001; (b) SP2 (2.9) = -%; (c) CNFD (2.13)h = %, k = 0.0001.

256’
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position density current density

a(i) 14

|
o
N

0.2
0.

b(i) 14 0.2

c(i)

FIG. 9. Numerical solutions at different times in Example 3 by using SP2 (R.9).0.02. +++: numerical
solution, ——: weak limit. (a} = 0.52; (b)t = 3.6; (c)t = 5.5. () ¢ = 0.04,h = . (i) ¢ = 0.0025,h = ;..
(iii) & = 0.00015625h = ;&..

Let V(X,y) = XZLZVZ corresponding to the two-dimensional harmonic oscillator
For this example, the weak limit:°(x,y,t) and J°(x,y,t) of n(x,y,t) and
Jé(x, y, 1), respectively, as — 0 are given in Gasser and Markowich [7].

We compute on the rectangle-2, 2] x [—2, 2] with periodic boundary conditions.
Figure 10 shows the numerical solutions on the lines —0.25 andx =0 att =
2.7, with k = 0.05 and different values of and mesh sizeh. Conclusions similar to
those for the one-dimensional case can be made for the meshing strategy.

From these numerical results, we see that the numerical methods, SP2 (2.9) or
(2.5), give very promising results on the observables in the semiclassical regime v
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e-independent time stdpand mesh sizé = O(e), in one and two space dimensions for
the linear Schodinger equation.

We shall now present numerical results for some nonlineard8aingér problems. How-
ever, we remark that these results can only be considered preliminary, with the goa
initiating the analysis of discretization techniques for the semiclassical regime in gene
and of the spectral time splitting techniques in particular. Much more research must
done in the analysis and numerical treatment of nonlineard8afgéer equations with a
small-scaled Planck constant.
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FIG. 9—Continued
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FIG. 9—Continued

In many applications nonlinear Sduinger equations of the form

82

eu; —i 2

uf(x,t =0) = uj(x)

appear, where the potenti&f is given by

(X, 1) = /avo<x, VU (y, t)12dy + B ViU (x, 1)]?).

Uy, +id°(x, HHu® =0,

(7.9)

(7.10)

(7.11)
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TABLE Il

The Error |Jus(t) — us" (t)||,» att = 0.64 with e = 0.01 in Example 3

Mesh
h=k  h=d  h=f  h=gy
k =0.16 0.7074 2.340E-2 2.340E-2 2.340E-2
k =0.04 0.7076 1.454E-3 1.454E-3 1.454E-3
k =0.01 0.7076 9.086E-5 9.086E-5 9.086E-5
k = 0.0025 0.7076 5.678E-6 5.678E-6 5.678E-6
k = 0.000625 0.7076 3.548E-7 3.548E-7 3.548E-7
k = 0.00015625 0.7076 2.209E-8 2.209E-8 2.209E-8

515

Here 0< Vjis atwo-body long-range interaction potential (satisfN¢x, y) = Vo(y, X),
VX, y € R), andV; > 0 is the primitive of an entropy function (modeling short-range
interactions).« and g, are real;a > 0 corresponds to a repulsive long-range interac

tion, @ < 0 to an attractive onej, > 0O is the defocusing case, apd < 0 the focusing
case.

The splitting method SP1 corresponds to solving, between, andt = t,1,

U =i, (7.12)
followed by

eu; = —iP°(x, t)u’. (7.13)

Also, fort € [ty, thy1], the ODE (7.13) leaveRé| invariant int,
a 2 - 2 H g2
a(|u*f| ) = 2 Re(uf UF) = —= Re(i ®°|u’[?) =0
&

(sinced* isreal valued)lu®| becomestime-independent aq ft,. 1] (sinced® only depends
on|u?|) and therefore

eu; = —1P°(X, th)u® (7.14)

can be integrated exactly just as in the linear case.

TABLE IV
The Error ||us(t) — us" (t)||,» at t = 0.64 with e = 0.0025 in Example 3

Mesh
h=g h= % h= h= 78
k=0.16 0.7080 9.153E-2 9.153E-2 9.153E-2
k =0.04 0.7080 5.699E-3 5.699E-3 5.699E-3
k =0.01 0.7080 3.560E-4 3.560E-4 3.560E-4
k = 0.0025 0.7080 2.225E-5 2.225E-5 2.225E-5
k = 0.000625 0.7080 1.390E-6 1.390E-6 1.390E-6
k = 0.00015625 0.7080 8.657E-8 8.657E-8 8.657E-8
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position density x — component current density

a(i) 14 0.2

-0.2 -0.1 [¢] 0.1 0.2 0.3 —-0.2 -0.1 (] 0.1 0.2 0.3

FIG.10. Numerical solutions at= 2.7 in Example 4 by using SP2 (2.% = 0.05. +++: numerical solution,
——:weaklimit. (a)e = 0.04;h = L;(b)e = 0.005,h = ;; (c)e = 0.000625h = L. (i) Ontheliney = 0.0.
(i) On the linex = —0.25.

Similarly, SP2 can be formulated for this class of nonlinear problems, again doing
t-integrations exactly after spectral discretization in space.

ExAMPLE 5 (attractive Schadinger—Poisson equation). Consider the nonlinear IVF
(7.9), (7.10) subject to periodic boundary condition ant]. Let « = —1, 8. = 0, and
let V be the Green function of the operate% subject to homogeneous Dirichlet bound-
ary conditions in (7.11).
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position density y — component current density

a(ii) 14
1.2}

.
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c(ii) 14
1.2¢

11

0.8¢

0.6

o4l

0.2}

-05 -04 -0.3 -0.2 -0.1 o] -05 -04 -0.3 -0.2 -0.1 o]

FIG. 10—Continued
The initial condition is taken as
us(x) = A)ESME Ax) =e, S(x) = —In(e* +e ), (7.15)

and we choosa = —4, b = 4. To test the numerical method, for each fixegdve compute
an approximate solution by using SP2 with a very fine mesh, Ie.g.,%%, and a very
small time step, e.gk = 0.0001, as the “exact” solutiouf . Figure 11 shows the numerical
results att = 1.5 with k = 0.01 when we choose = 0.08, h = ; ¢ = 0.01, h =

e =0.00125,h = . In Fig. 11 as well as Figs. 12 and 13, the solid line is the “exact

1024
solution and the +++ line is the numerically obtained solution. To obtain a better visualizat
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position density current density

(0] 0.2 0.4 0.6 (0] 0.2 0.4 0.6

FIG.11. Numerical solutions dt= 1.5in Example 5 by using SPR.= 0.01. +++: numerical solution, —:
“exact” solution. (8 = 0.08,h = &; (b)e = 0.01,h = ; (c) e = 0.00125,h = =

16’ 1024"

inthese figures, we depict the solutions in a subinterval instead of in the whole computatic
interval [—4, 4].

From Fig. 11 we can see that time-splitting spectral methods, SP2 and SP1, give \
promising results in the semiclassical regimegd@ndependent time stdpwhen the spatial
mesh sizé is chosen a®(¢), i.e., just as for the linear Sabdinger equation.

ExaMPLE 6 (nonlinear Schadinger equation). Consider the nonlinear Sclimger
equation (7.9) withe = 0, defocusing strong (1) nonlinearity, e.g.,8. = 1 or focus-
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position density current density

a(i)

0.4

031
0.2

0.1

—0.1r

0.2+

—-03r

—0.4
-15 -1 -05 0 0.5 1 1.5

c(i) 0.4
0.3r
0.2}
0.1}

0

—0.1}

—02;

-0.3

0 -0.4
0.8 0.9 1 1.1 1.2 15 -1 -05 0 0.5 1 1.5

FIG.12. Numerical solutions &= 1.0in Example 6 by using SP2 for defocusing nonlineagsjty= 1.0. +++:
numerical solution, ——: “exact” solution. (i) Under meshing stratdyy: O(¢) andk = O(¢): (a) ¢ = 0.04,

k=10.008,h= Z; (b) e =001,k =0.002,h = 5: (c) ¢ = 0.0025,k = 0.0005,h = . (i) Under meshing
strategy:h = O(e) andk = 0.008-independent of: (a) ¢ = 0.04,k = 0.008,h = 3i2; (b) e = 0.01,k = 0.008,
h = L (€) e = 0.0025,k = 0.008,h = L.

ing weakO(g) nonlinearity, e.g.8. = —¢ in (7.11). Also, seV¥;(s) = s; i.e., we deal with

the cubically nonlinear Schdinger equation. This problem was studied in, e.g., [2, 11, 12
For the defocusing case, e.§.,= 1, the initial condition is taken-oscillatory:

Ui (x) = A)ESME A =e ™, S(x) = —InEe + 7). (7.16)



520 BAO, JIN, AND MARKOWICH

position density current density

a(ii)

b(ii) N T
I 1 -+

++

c(ii) ©

-4 -2 o 2 4 Z4 -2 0 2 4

FIG. 12—Continued

We solve the problem on the intervat4, 4] with periodic boundary conditions. To test the
numerical method, for each fixedwe compute a numerical solution by using SP2 with &
very fine mesh, e.gh = 40%, and a very small time step, e.f.= 0.00001, as the “exact”
solutionu®. Figure 12 shows the numerical results at 1 0 (after the caustics formed) with
B: = 1.0 when we choose = 004 k =0.008,h = 32, ¢ =0.01,k=0.002,h = 128,

& = 0.0025,k = 0.0005,h = 512, which corresponds to the meshing stratbgy: O(s)
andk = O(e); and choosmg 0.04,k = 0.008,h = 32, ¢ =0.01,k =0.008,h =
¢ = 0.0025,k = 0.008,h =
k = 0.008-independent af.

128’
512, which corresponds to the meshing strathgy O(e) and
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position density current density

a(l) 35

b(i)

c(i)

-0.2 -0.1 9] 0.1 0.2 0.3 -0.2 -0.1 0 0.1 0.2 0.3

FIG. 13. Numerical solutions at = 1.5 in Example 6 by using SP2 for focusing we@Ke) nonlinearity
B. = —e. +++: numerical solution, ——: “exact” solution. (i). Under meshing stratégy: O(e) andk = O(¢):
(@) e =0.04, k=002, h=Z; (b) £ =001, k=0.005, h = %; (c) £ =0.0025, k =0.00125,h = .
(il). Under meshing strategyh = O(¢) and k = 0.02-independent ot: (a) ¢ = 0.04, k =0.02, h =
(b)e =0.01,k =0.02,h = %; (c) e = 0.0025,k = 0.02,h =

512°

1.
32

For the focusing weald (¢) nonlinearity case, e.g8, = —e¢, the initial condition is taken
as

U (X) = Ade, )ESXE Ae, x) = (1+ 0.2 co§<i>>e—xz,
N
(7.17)

S(x) = —In(e* +e7).
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position density current density

a(ii)

b(ii)

c(ii) *» ‘ ol

R

FIG. 13—Continued

In fact, in these initial data, physically it has three scalesx{@boratory scale; (iix/e,
the scale of the rapid oscillations; and (iii) an intermediatg’e scale of the instability [2].
Similarly, the problem is solved on-{4, 4] with periodic boundary conditions and the “ex-
act” solutionu® is obtained the same way as in the defocusing case. Figure 13 shows
numerical results at= 1.5 (after the caustics formed) wifly = —e when we choose =
0.04,k = 0.02,h = Biz; e =0.01,k = 0.005,h = %8; e = 0.0025,k = 0.00125h = 5%2
whichish = O(g) andk = O(¢); and fore = 0.04,k = 0.02,h = Siz; e =0.01,k =0.02,
h= e = 0.0025,k = 0.02, h = 2, which ish = O(¢) andk = 0.02-independent

1. 1
128’ 512
of s.
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From Figs. 12 and 13 we can see that one needs the following constraint in orde
guarantee good approximations of all (smooth) observablesdorall: for the defocusing
nonlinearity and focusing wedR(¢) nonlinearity, i.e.8, > 0ands, = O(¢) < 0in(7.11),
respectively, the meshing strategy is

h=0(), k= O0(). (7.18)

Weaker constraint on meshing, e.h.= O(¢) andk-independent ot, gives incorrect
numerical observables.

Remark 7.1. For the focusing weald(¢) nonlinearity, e.g.8. = —e, when the initial
condition (7.16) is used, the constraint on the time &apd mesh sizh is the same as in
(7.18).

Remark 7.2. For the focusing stron® (1) nonlinearity, e.g.8. = —1, due to the mod-
ulational instability (see detail in [2]), more study is required for this case.

8. CONCLUSIONS

Time-splitting spectral approximations for the Sathiriger equation in the semiclassi-
cal regime (i.e., for small-scaled Planck constentvere studied. They are based on a
time-splitting method coupled with the trigonometric spectral approximation of the spat
derivative. This method conserves the total charge, and itis gauge-invariant, time-revers
and very effective in capturingroscillatory solutions of the Scbdinger equation in the
small-Planck-constant regime. It allows the use-@fidependent time steps and a spatia
mesh size comparable to the scaled Planck constant for the lineard8aiei’ equation
and for the weakly nonlinear Saiinger—Poisson problem if only accurate quadratic ob
servables are desired, while the frequently used finite difference methods require mesh
and time step much smaller than the scaled Planck const&imerical results for the
nonlinear Schwdinger equation are also presented. In general, more restrictive mesh
conditions are needed there.

Finally, we mention that extensive numerical study on this time-splitting spectral apprc
imation for nonlinear Sclodinger equations has been recently carried out by the authc
in [1].
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